Potential Role of Regulatory T Cells in Reversing Obesity-Linked Insulin Resistance and Diabetic Nephropathy
نویسندگان
چکیده
OBJECTIVE To assess the potential role of FoxP3-expressing regulatory T cells (Tregs) in reversing obesity-linked insulin resistance and diabetic nephropathy in rodent models and humans. RESEARCH DESIGN AND METHODS To characterize the role of Tregs in insulin resistance, human visceral adipose tissue was first evaluated for Treg infiltration and second, the db/db mouse model was evaluated. RESULTS Obese patients with insulin resistance displayed significantly decreased natural Tregs but an increase in adaptive Tregs in their visceral adipose tissue as compared with lean control subjects. To further evaluate the pathogenic role of Tregs in insulin resistance, the db/db mouse model was used. Treg depletion using an anti-CD25 monoclonal antibody enhanced insulin resistance as shown by increased fasting blood glucose levels as well as an impaired insulin sensitivity. Moreover, Treg-depleted db/db mice developed increased signs of diabetic nephropathy, such as albuminuria and glomerular hyperfiltration. This was paralleled by a proinflammatory milieu in both murine visceral adipose tissue and the kidney. Conversely, adoptive transfer of CD4(+)FoxP3(+) Tregs significantly improved insulin sensitivity and diabetic nephropathy. Accordingly, there was increased mRNA expression of FoxP3 as well as less abundant proinflammatory CD8(+)CD69(+) T cells in visceral adipose tissue and kidneys of Treg-treated animals. CONCLUSIONS Data suggest a potential therapeutic value of Tregs to improve insulin resistance and end organ damage in type 2 diabetes by limiting the proinflammatory milieu.
منابع مشابه
The Effect of Curcumin on GLUT4 Gene Expression as a Diabetic Resistance Marker in C2C12 Myoblast Cells
Objective: Adipocyte and skeletal muscle are important tissues which contribute the development and progression of metabolic disorder. Insulin has a major regulatory function on glucose metabolism in these tissues by redistributing glucose transporter (GLUT4) from intracellular vesicles to the cell surface. Today, due to the side effects of chemical medications attendance to herbal medicines is...
متن کاملRole of alteration in Treg/Th17 cells’ balance in nephropathic patients with Type 2 diabetes mellitus
INTRODUCTION In type 2 diabetes mellitus, the adaptive immune system drives systemic inflammation, promoting insulin resistance and related complications, such as diabetic nephropathy. Increased infiltration of activated T lymphocytes has been found in patients with diabetic nephropathy. T-cell influx and accumulation are the factors that aggravate diabetic nephropathy and link with glomerular ...
متن کاملThe Role of Visfatin in Diabetic Nephropathy
As a result of the energy overload in obesity, insulin resistance, type 2 diabetes, dyslipidemia, hypertension, and atherosclerosis develop, which together comprise the metabolic syndrome. Although the kidney becomes a victim of hyperglycemia in diabetes mellitus, recent work has shown that the abnormalities of lipid and glucose metabolism in the kidney are similarly important to those in adipo...
متن کاملThe Effect of 12 Weeks Resistance Training on FOXO1 Expression in Hepatocytes, Glucose and Insulin in Diabetic Rats- A Brief-Report
Objective: In diabetic patients, hyperglycemia is associated with impaired FOXO signaling pathways in liver cells. This study aimed to determine the effect of resistance training on FOXO1 expression in liver hepatocytes and fasting glucose levels in type 2 diabetic rats. Materials and Methods: In this experimental study, type 2 diabetes induced by intraperitoneal injection of nicotinamide-STZ ...
متن کاملSimultaneous Effects of Metformin and Sitagliptin on the Contents of Insulin Resistance Proteins Glucose Transporter 4 and Protein Kinase B in Diabetic Patients\' Adipose Tissue
Objective: Obesity is a factor in the development of insulin resistance and type 2 diabetes. Obesity contributes a wide variety of metabolic changes such as insulin resistance. The insulin signal mechanism to intra-cells occurs in insulin resistance, primarily in adipose tissue cells, which can be appropriate targets for therapeutic approaches by recognizing the proteins in this pathway. The st...
متن کامل